1,473 research outputs found

    DNA methylation and lipid metabolism: an EWAS of 226 metabolic measures

    Get PDF
    BACKGROUND The discovery of robust and trans-ethnically replicated DNA methylation markers of metabolic phenotypes, has hinted at a potential role of epigenetic mechanisms in lipid metabolism. However, DNA methylation and the lipid compositions and lipid concentrations of lipoprotein sizes have been scarcely studied. Here, we present an epigenome-wide association study (EWAS) (N = 5414 total) of mostly lipid-related metabolic measures, including a fine profiling of lipoproteins. As lipoproteins are the main players in the different stages of lipid metabolism, examination of epigenetic markers of detailed lipoprotein features might improve the diagnosis, prognosis, and treatment of metabolic disturbances. RESULTS We conducted an EWAS of leukocyte DNA methylation and 226 metabolic measurements determined by nuclear magnetic resonance spectroscopy in the population-based KORA F4 study (N = 1662) and replicated the results in the LOLIPOP, NFBC1966, and YFS cohorts (N = 3752). Follow-up analyses in the discovery cohort included investigations into gene transcripts, metabolic-measure ratios for pathway analysis, and disease endpoints. We identified 161 associations (p~value \textless 4.7 × 10-10), covering 16 CpG sites at 11 loci and 57 metabolic measures. Identified metabolic measures were primarily medium and small lipoproteins, and fatty acids. For apolipoprotein B-containing lipoproteins, the associations mainly involved triglyceride composition and concentrations of cholesterol esters, triglycerides, free cholesterol, and phospholipids. All associations for HDL lipoproteins involved triglyceride measures only. Associated metabolic measure ratios, proxies of enzymatic activity, highlight amino acid, glucose, and lipid pathways as being potentially epigenetically implicated. Five CpG sites in four genes were associated with differential expression of transcripts in blood or adipose tissue. CpG sites in ABCG1 and PHGDH showed associations with metabolic measures, gene transcription,~and metabolic measure ratios and were additionally linked to obesity or previous myocardial infarction, extending previously reported observations. CONCLUSION Our study provides evidence of a link between DNA methylation and the lipid compositions and lipid concentrations of different lipoprotein size subclasses, thus offering in-depth insights into well-known associations of DNA methylation with total serum lipids. The results support detailed profiling of lipid metabolism to improve the molecular understanding of dyslipidemia and related disease mechanisms

    Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers

    Get PDF
    Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8 x 10(-4); Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8 x 10(-10); Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation

    Increased amino acids levels and the risk of developing of hypertriglyceridemia in a 7-year follow-up

    Get PDF
    BACKGROUND: Recently, five branched-chain and aromatic amino acids were shown to be associated with the risk of developing type 2 diabetes (T2D). AIM: We set out to examine whether amino acids are also associated with the development of hypertriglyceridemia. MATERIALS AND METHODS: We determined the serum amino acids concentrations of 1,125 individuals of the KORA S4 baseline study, for which follow-up data were available also at the KORA F4 7 years later. After exclusion for hypertriglyceridemia (defined as having a fasting triglyceride level above 1.70 mmol/L) and diabetes at baseline, 755 subjects remained for analyses. RESULTS: Increased levels of leucine, arginine, valine, proline, phenylalanine, isoleucine and lysine were significantly associated with an increased risk of hypertriglyceridemia. These associations remained significant when restricting to those individuals who did not develop T2D in the 7-year follow-up. The increase per standard deviation of amino acid level was between 26 and 40 %. CONCLUSIONS: Seven amino acids were associated with an increased risk of developing hypertriglyceridemia after 7 years. Further studies are necessary to elucidate the complex role of these amino acids in the pathogenesis of metabolic disorders

    Metabolomic Profiling of Long-Term Weight Change:Role of Oxidative Stress and Urate Levels in Weight Gain

    Get PDF
    OBJECTIVE: To investigate the association between long-term weight change and blood metabolites. METHODS: Change in BMI over 8.6 ± 3.79 years was assessed in 3,176 females from the TwinsUK cohort (age range: 18.3-79.6, baseline BMI: 25.11 ± 4.35) measured for 280 metabolites at follow-up. Statistically significant metabolites (adjusting for covariates) were included in a multivariable least absolute shrinkage and selection operator (LASSO) model. Findings were replicated in the Cooperative Health Research in the Region of Augsburg (KORA) study (n = 1,760; age range: 25-70, baseline BMI: 27.72 ± 4.53). The study examined whether the metabolites identified could prospectively predict weight change in KORA and in the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) study (n = 471; age range: 55-74, baseline BMI: 27.24 ± 5.37). RESULTS: Thirty metabolites were significantly associated with change in BMI per year in TwinsUK using Bonferroni correction. Four were independently associated with weight change in the multivariable LASSO model and replicated in KORA: namely, urate (meta-analysis β [95% CI] = 0.05 [0.040 to 0.063]; P = 1.37 × 10-19 ), gamma-glutamyl valine (β [95% CI] = 0.06 [0.046 to 0.070]; P = 1.23 × 10-20 ), butyrylcarnitine (β [95% CI] = 0.04 [0.028 to 0.051]; P = 6.72 × 10-12 ), and 3-phenylpropionate (β [95% CI] = -0.03 [-0.041 to -0.019]; P = 9.8 × 10-8 ), all involved in oxidative stress. Higher levels of urate at baseline were associated with weight gain in KORA and PLCO. CONCLUSIONS: Metabolites linked to higher oxidative stress are associated with increased long-term weight gain

    A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis

    Get PDF
    The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown, but genetic factors are thought to play a significant role in determining susceptibility to motor neuron degeneration. To identify genetic variants altering risk of ALS, we undertook a two-stage genome-wide association study (GWAS): we followed our initial GWAS of 545 066 SNPs in 553 individuals with ALS and 2338 controls by testing the 7600 most associated SNPs from the first stage in three independent cohorts consisting of 2160 cases and 3008 controls. None of the SNPs selected for replication exceeded the Bonferroni threshold for significance. The two most significantly associated SNPs, rs2708909 and rs2708851 [odds ratio (OR) = 1.17 and 1.18, and P-values = 6.98 x 10–7 and 1.16 x 10–6], were located on chromosome 7p13.3 within a 175 kb linkage disequilibrium block containing the SUNC1, HUS1 and C7orf57 genes. These associations did not achieve genome-wide significance in the original cohort and failed to replicate in an additional independent cohort of 989 US cases and 327 controls (OR = 1.18 and 1.19, P-values = 0.08 and 0.06, respectively). Thus, we chose to cautiously interpret our data as hypothesis-generating requiring additional confirmation, especially as all previously reported loci for ALS have failed to replicate successfully. Indeed, the three loci (FGGY, ITPR2 and DPP6) identified in previous GWAS of sporadic ALS were not significantly associated with disease in our study. Our findings suggest that ALS is more genetically and clinically heterogeneous than previously recognized. Genotype data from our study have been made available online to facilitate such future endeavors

    Rare Variants in PLXNA4 and Parkinson's Disease.

    Get PDF
    Approximately 20% of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset familial PD followed by frequency assessment in 975 PD cases and 1014 ethnically-matched controls and linkage analysis to identify potentially causal variants. Based on the predicted penetrance and the frequencies, a variant in PLXNA4 proved to be the best candidate and PLXNA4 was screened for additional variants in 862 PD cases and 940 controls, revealing an excess of rare non-synonymous coding variants in PLXNA4 in individuals with PD. Although we cannot conclude that the variant in PLXNA4 is indeed the causative variant, these findings are interesting in the light of a surfacing role of axonal guidance mechanisms in neurodegenerative disorders but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance

    Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Get PDF
    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis

    Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity

    Get PDF
    There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th) and 95(th) percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th) percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50) = 0.0103). This finding was not confirmed in the trios (p(GSEA,50) = 0.5991), but in KORA (p(GSEA,50) = 0.0398). The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50) = 0.1052, p(MAGENTA,75) = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity
    corecore